博客
关于我
Natural Language Processing (NLP)原理与代码实例讲解
阅读量:451 次
发布时间:2019-03-06

本文共 446 字,大约阅读时间需要 1 分钟。

自然语言处理(NLP)原理与代码实例讲解

1. 背景介绍

1.1 问题的由来

在信息爆炸的时代,人类每天产生的数据呈指数级增长,其中大部分以自然语言形式存在,如电子邮件、社交媒体帖子、新闻文章、产品评论等。处理这些数据并从中提取有价值信息已成为现代社会不可或缺的能力。自然语言处理(NLP)作为核心技术,致力于使计算机能够理解、解释和生成人类语言,为自动化文本处理提供强大工具。

1.2 研究现状

NLP在过去几十年取得了显著进展,特别是在深度学习的推动下。现代NLP系统不仅能完成基本任务如问答、文本分类、情感分析,还能处理复杂需求,包括文本生成、语音识别、机器翻译和对话系统等。这些技术的成熟和广泛应用,使其成为科技公司和多个行业的核心解决方案。

1.3 研究意义

NLP技术的意义在于极大地扩展了人机交互的范围和深度,使机器能够理解人类意图,提供个性化服务,提高信息检索效率,并支持决策制定。它对提升用户体验、提高工作效率、改善社会沟通模式以及推进人工智能与人类智慧的结合具有重要作用。

转载地址:http://ewyfz.baihongyu.com/

你可能感兴趣的文章
NLog 自定义字段 写入 oracle
查看>>
NLog类库使用探索——详解配置
查看>>
NLP 基于kashgari和BERT实现中文命名实体识别(NER)
查看>>
NLP 时事和见解【2023】
查看>>
NLP 模型中的偏差和公平性检测
查看>>
Vue3.0 性能提升主要是通过哪几方面体现的?
查看>>
NLP 项目:维基百科文章爬虫和分类【01】 - 语料库阅读器
查看>>
NLP_什么是统计语言模型_条件概率的链式法则_n元统计语言模型_马尔科夫链_数据稀疏(出现了词库中没有的词)_统计语言模型的平滑策略---人工智能工作笔记0035
查看>>
NLP、CV 很难入门?IBM 数据科学家带你梳理
查看>>
NLP三大特征抽取器:CNN、RNN与Transformer全面解析
查看>>
NLP入门(六)pyltp的介绍与使用
查看>>
NLP学习笔记:使用 Python 进行NLTK
查看>>
NLP度量指标BELU真的完美么?
查看>>
NLP的不同研究领域和最新发展的概述
查看>>
NLP的神经网络训练的新模式
查看>>
NLP采用Bert进行简单文本情感分类
查看>>
NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
查看>>
NLP项目:维基百科文章爬虫和分类【02】 - 语料库转换管道
查看>>
NLP:从头开始的文本矢量化方法
查看>>
NLP:使用 SciKit Learn 的文本矢量化方法
查看>>